Math, asked by vidit101vishal, 1 year ago

prove that
sin8π/3 × cos23π/6 + cos13π/3 × sin35π/6 =1/2

Answers

Answered by hukam0685
14
this can be represented as
 \sin(2\pi +   \frac{2\pi}{3} )  \times  \cos(4\pi -  \frac{\pi}{6} )  +  \\  \cos(4\pi +  \frac{\pi}{3} )  \times  \sin(6\pi -  \frac{\pi}{6} )
 \sin( \frac{2\pi}{3} )  \times  \cos( \frac{\pi}{6} )   -   \cos( \frac{\pi}{3} )  \\  \times  \sin( \frac{\pi}{6} )
  \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}   -   \frac{1}{2}  \times  \frac{ 1 }{2}
 \frac{3}{4}   -   \frac{1}{4}
 \frac{3 - 1}{4}  \\ =   \frac{2}{4}  \\  =  \frac{1}{2}
hence proved




vidit101vishal: just check
vidit101vishal: your insta i will send you
vidit101vishal: vidit_vishal
vidit101vishal: accept it
vidit101vishal: have you accepted
Answered by JarvisOP
0

Answer:

\sin(2\pi +   \frac{2\pi}{3} )  \times  \cos(4\pi -  \frac{\pi}{6} )  +  \\  \cos(4\pi +  \frac{\pi}{3} )  \times  \sin(6\pi -  \frac{\pi}{6} )  

\sin( \frac{2\pi}{3} )  \times  \cos( \frac{\pi}{6} )   -   \cos( \frac{\pi}{3} )  \\  \times  \sin( \frac{\pi}{6} )  

 \frac{ \sqrt{3} }{2}  \times  \frac{ \sqrt{3} }{2}   -   \frac{1}{2}  \times  \frac{ 1 }{2}  

\frac{3}{4}   -   \frac{1}{4}  

\frac{3 - 1}{4}  \\ =   \frac{2}{4}  \\  =  \frac{1}{2}

hence proved

Similar questions