Math, asked by srikar2251, 11 months ago

Prove that
Sin80 -cos110 = root3sin50

Answers

Answered by isyllus
20

\mathbf{\sin80^\circ-\sin20^\circ=\sqrt{3}\sin50^\circ}

Hence proved

Step-by-step explanation:

To prove:  \sin80^\circ-\cos110^\circ=\sqrt{3}\sin50^\circ

Proof:

Taking left side

\Rightarrow \sin80^\circ-\cos110^\circ

\Rightarrow \sin80^\circ-\cos(90^\circ+20^\circ)      \cos(90+\theta)=-\sin\theta

\Rightarrow \sin80^\circ+\sin20^\circ        \sin A+\sin B=2\sin(\frac{A+B}{2})\cos(\frac{A-B}{2})

\Rightarrow 2\sin(\frac{80^\circ+20^\circ}{2})\cos(\frac{80^\circ-20}{2})

\Rightarrow 2\sin50^\circ\cos30^\circ

\Rightarrow 2\sin50^\circ\cdot \dfrac{\sqrt{3}}{2}

\Rightarrow \sqrt{3}\sin50^\circ

LHS = RHS

Hence proved

#Learn more:

Trigonometry identity

https://brainly.in/question/10048386

https://brainly.in/question/11371684

Answered by FelisFelis
10

\sin80 - \cos110=\sqrt{3}\sin50 proved

Step-by-step explanation:

Consider the provided information.

\sin80 - \cos110=\sqrt{3}\sin50

Consider the LHS.

\sin80 - \cos(90+20)

\sin80 +\sin20 (∴Cos 90+θ = -Sin θ)

Use the identity: \sin A +\sin B = 2\sin \frac{(A+B)}{2}\cos\frac{(A-B)}{2}

2\sin\frac{80+20}{2}\cos\frac{80-20}{2}

2\sin50\cos30

2\sin50\frac{\sqrt{3}}{2}

\sqrt{3}\sin50

Hence, LHS=RHS

#Learn more

Prove that Sin10°+Sin20°+Sin40°+Sin50°=Sin70°+Sin80°

https://brainly.in/question/1370752

Similar questions