prove that sin8A/sinA= 8cosAcos2Acos4A
Answers
Answered by
30
:--
prove that :---- (sin8A/sinA) = 8cosAcos2Acos4A
:-----
We know that :--
sin2A = 2sinA*CosA
using this formula ,
Sin8A/sinA
=> sin(2*4A)/sinA
=> (2sin4A*cos4A)/sinA
=> 2sin(2*2A)*cos4A/sinA
=> 2(2sin2A*cos2A)*cos4A/sinA
=> 4sin2A*cos2A*cos4A/sinA
=> 4(2sinA*cosA)cos2A*cos4A/sinA
=> 8sinA*cosA*cos2A*cos4A/sinA
=> 8cosA*cos2A*cos4A
:------
Cos2A = 2cos²A-1 = 1-2Sin²A
Tan2A = 2TanA/(1-tan²A)
Similar questions
Math,
5 months ago
Math,
5 months ago
Chemistry,
5 months ago
Math,
10 months ago
CBSE BOARD X,
1 year ago