Math, asked by Rudraansh26, 11 months ago

prove that ½{sinA/1+cosA + 1+cosA/sinA}=1/sinA​

Answers

Answered by Anonymous
2

1 \div 2( \sin(a)  \div 1 +  \cos(a)  + 1 +  \cos(a)  \div  \sin(a))  \\ 1 \div 2( \sin {a}^{2} ) +(1  +  \cos(a)   )^{2} \div  \sin(a)( \cos(a) ) \\1 \div 2  \sin( {a}^{2} )  +  \cos( {a}^{2} ) + 1 + 2 \cos(a)   \div  \sin(a) ( \cos(a)  + 1) \\1 \div 2 2(1 +  \cos(a)  \div  \sin(a) ( \cos(a)  + 1) \\ 1 \div 2 \times 2 \div  \sin(a)  \\ 1 \div  \sin(a)  \\ hence \: proved

this is the answer frnds

Answered by Anonymous
5

Answer:

 \frac{1}{2} ( \frac{ \sin(x) }{1 +  \cos(x) }  +  \frac{1 +  \cos(x) }{ \sin(x) } ) \\  \frac{1}{2} \frac{ { \sinx}^{2} +  {1 +  \cos(x) }^{2} }{ \sin(x)(1 +  \cos(x) )}  \\   \frac{ { \sin(x) }^{2}  + 1 +  { \cos(x) }^{2}  + 2 \cos(x) }{ \sin(x) (1 +  \cos(x) )}  \\   \frac{1 + 1 + 2 \cos(x) }{ \sin(x) (1 +  \cos(x) }  \\  \frac{1}{2} ( \frac{2 + 2 \cos(x) }{ \sin(x)(1 +  \cos(x))}  =  \frac{2}{ \sin(x) }

Hope its help uh

Similar questions