Math, asked by visal53, 1 year ago

prove that (sinA/(1-cosA))+((1-cosA)/sinA)=2cosec A


thisissahilgagpbhydr: Wait a min, I'm solving it.

Answers

Answered by thisissahilgagpbhydr
2

\frac{sinA}{1-cosA} + \frac{1-cosA}{sinA} = 2cosecA

In LHS,

\frac{sinA}{1-cosA} + \frac{1-cosA}{sinA}=\frac{(sinA)^2+(1-cosA)^2}{1-cosA(sinA)}

Since (a-b)^2 = a^2+b^2-2ab

\frac{sin^2A+1+cos^2A-2cosA}{1-cosA(sinA)}

As sin^2A+cos^2A=1

\frac{1+1-2cosA}{1-cosA(sinA)}

=\frac{2-2cosA}{1-cosA(sinA)}

=\frac{2(1-cosA)}{1-cosA(sinA)}

=\frac{2}{sinA}

=2(\frac{1}{sinA} )

=2cosecA

∴ LHS = RHS

Hope I did it right.


thisissahilgagpbhydr: There's a formmating error at second line, so ignore the and [tex] lines.
thisissahilgagpbhydr: *formatting
thisissahilgagpbhydr: Ignore the P brackets and tex brackets at second line.
thisissahilgagpbhydr: OK, I fixed the second line, so there should be no problems there.
Similar questions