prove that sinA/1+cosA+1+cosa/sinA=2cosecA
Answers
Answered by
217
✔✔Hence, it is proved ✅✅.
____________________________________
.
Attachments:
Answered by
46
here is your answer OK
sinA/1+cosA] +[1+cosA/sinA] = 2cosecA (find LCM for the bolded regions)
=[ (sin2A )+(1+cosA)2 ] / [sinA(1+cosA) ] = 2cosecA
change (1+cosA)2 to a2 +2ab +b2
=[ (sin2A )+(12+2cosA*1 + cos2) ] / [sinA (1+cosA) ] = 2cosecA
change sin2A to 1 - cos2A ( by the 1st identity sin2A + cos2A =1 )
=[ (1 - cos2A )+(1+2cosA + cos2) ] / [sinA (1+cosA) ] = 2cosecA
=1 - cos2A +1+2cosA + cos2 / sinA (1+cosA) = 2cosecA
= 2 +2cosA / sinA (1+cosA) = = 2cosecA
Take 2 OUT
=2 ( 1+ cosA ) / sinA (1+cosA) = 2cosecA
From here ( 1+ cosA ) in numerator & denominator get canceled
=> 2 / sinA = 2cosecA
We know 1 / sinA =cosecA
Thus we get
2cosecA = 2cosecA
hence verified...
Hope thizzz.. help..
ok
sinA/1+cosA] +[1+cosA/sinA] = 2cosecA (find LCM for the bolded regions)
=[ (sin2A )+(1+cosA)2 ] / [sinA(1+cosA) ] = 2cosecA
change (1+cosA)2 to a2 +2ab +b2
=[ (sin2A )+(12+2cosA*1 + cos2) ] / [sinA (1+cosA) ] = 2cosecA
change sin2A to 1 - cos2A ( by the 1st identity sin2A + cos2A =1 )
=[ (1 - cos2A )+(1+2cosA + cos2) ] / [sinA (1+cosA) ] = 2cosecA
=1 - cos2A +1+2cosA + cos2 / sinA (1+cosA) = 2cosecA
= 2 +2cosA / sinA (1+cosA) = = 2cosecA
Take 2 OUT
=2 ( 1+ cosA ) / sinA (1+cosA) = 2cosecA
From here ( 1+ cosA ) in numerator & denominator get canceled
=> 2 / sinA = 2cosecA
We know 1 / sinA =cosecA
Thus we get
2cosecA = 2cosecA
hence verified...
Hope thizzz.. help..
ok
Similar questions