Math, asked by subhogun2, 1 year ago

prove that sinA÷1+cosA=CosecA-cotA​

Attachments:

Answers

Answered by smart77
3
ho gaya thanq bye samaj aya to brainiest ar dena please
Attachments:

smart77: mark it brainiest
smart77: please
smart77: ans is absolutely right
smart77: please
Answered by abdul9838
7

 \small \bf \pink{hey \: mate \: here \: is \: ur \: ans} \\  \\ \small \bf \pink{ \huge \: solution} \\  \\ \small \bf \pink{ \frac{sin \: a}{1 + cos \:  a}  =cosec \: a - cot \: a } \\  \\  \\  \\ \small \bf \pink{taking \:lhs }\\  \\ \small \bf \pink{ \frac{sin \: a}{1 + cos \: a} } \\  \\ \small \bf \pink{ \frac{sin \: a(1 - cos \: a)}{(1 + cos \: a)(1 - cos \: a)} } \\  \\ \small \bf \pink{ \frac{sin \: a(1 - cos \: a)}{ {1}^{2}  -  {cosa}^{2} a} } \\  \\ \small \bf \pink{ \frac{sin \: a(1 - cos \: a)}{1 -  {cos \: }^{2} a} } \\  \\ \small \bf \pink{ \frac{sin \: a(1 - cos \: a)}{ {sin}^{2} a)}  \: (hence \:  {sin}^{2} a -  {cos}^{2} a = 1)} \\  \\ \small \bf \pink{ \therefore \:  {sin}^{2}a = 1 - cos^{2}  a} \\  \\ \small \bf \pink{ \frac{sin \: a(1 - cos \: a)}{sin \: a \times sin \: a} } \\  \\ \small \bf \pink{ \frac{1 - cos \: a}{sin \: a} } \\  \\ \small \bf \pink{ \frac{1}{sin \: a} -  \frac{cos \: a}{sin \: a}  } \\  \\ \small \bf \pink{cosec \: a - cot \: a \:  \: } \\  \\ \small \bf \pink{lhs = rhs \:  \:  \: proved}

Similar questions