Math, asked by rudrapratap65, 1 year ago

Prove that SinA/(1+CosA)=(CosecA-CotA)​

Answers

Answered by supritnaik100
1

Please see the attachment!

Attachments:

supritnaik100: Please mark the answer as brainliest
Answered by nain31
5
 \bold{GIVEN}

\huge \boxed{\mathsf{\dfrac{sin \: A}{1+cos \: A} = cosec \: A - cot \: A}}

On taking left handside,

 \mathsf{\dfrac{sin \: A}{1+cos \: A}}

Multiply the numerator as well as denominator with

 \LARGE \boxed{\mathsf{1- cos \: A}}}

\mathsf{\dfrac{sin \: A \times 1- cos \: A }{1+cos \:A\times 1- cos\:A}}

SINCE,

\mathsf{(a+b)(a-b)= a^{2}+ b^{2} }

so, we can say

\mathsf{(1+Cos \: A)(1- Cos \:A)= 1 - cos^{2}A}

So,

\mathsf{\dfrac{sin \:A (1- cos\:A)}{1 - cos^{2}A}}

\mathsf{\dfrac{sin \:A - sin \: A . cos\:A}{1 - cos^{2}A}}

SINCE,

\boxed{\mathsf{1 - cos^{2}A= sin^{2}A}}

\mathsf{\dfrac{sin \:A - sin \: A . cos\:A}{sin^{2}A}}

on taking each one sepeartely,

\mathsf{\dfrac{sin \:A }{sin^{2}A} - \dfrac{cos \: A .sin \:A }{sin^{2}A}}

on solving we get

\mathsf{\dfrac{1 }{sin \: A} - \dfrac{cos\:A}{sin \: A}}

\boxed{\mathsf{\frac{1}{sin\: A}= cosec \: A}}

\boxed{\mathsf{\frac{cos \: A}{sin\: A}= cot \: A}}

THEREFORE,

\mathsf{cosec \: A -cot \: A}

L.H.S = R.H.S

 \large \mathsf{HENCE \: PROVE}
Similar questions