Math, asked by rccslsnfkek, 2 months ago

Prove that : sinA/1 + cotA - cosA/ 1 + tanA = SinA - Cos A.​

Answers

Answered by MsValiant
48

⠀⠀⌬ Prove that :

\begin{gathered}\qquad \qquad \sf \bigstar \: \dfrac{sin\:A}{1\:+\:Cot\:A}\:\:-\:\: \: \dfrac{cos\:A}{1\:+\:tan\:A }\:\:=\:\: sin\:A\:-\:cos\:A \:\\\\\end{gathered}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━⠀

\begin{gathered}\qquad \qquad \sf \pink\dashrightarrow\: \dfrac{sin\:A}{1\:+\:Cot\:A}\:\:-\:\: \: \dfrac{cos\:A}{1\:+\:tan\:A }\:\:=\:\: sin\:A\:-\:cos\:A \:\\\\\end{gathered}

{ }

\begin{gathered}\qquad \bigstar \:\underline {\pmb{\purple {\sf \:By \:Taking \: L.H.S \:,\:we\:get\:\::\:}}}\:\\\\\end{gathered}

{ }

\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{sin\:A}{1\:+\:cot\:A}}\:-\:{\dfrac{cos\:A}{1\:+\:tan\:A}}

{ }

\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{sin\:A\:\times\:sin\:A}{sin\:A\:+\:cos\:A}}\:-\:{\dfrac{cos\:A\:\times\:cos\:A}{cos\:A\:+\:sin\:A}}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{sin²A\:-\:cos²A}{sin\:A\:+\:cos\:A}}

{ }

\:\:\:\:\:\:\:\:\:\:\dashrightarrow\:\sf{\dfrac{(sin\:A\:-\:cos\:A)\:(sin\:A\:+\:cos\:A)}{(sin\:A\:+\:cos\:A}}

{ }

\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\sf{\bold{∵\:a²\:-\:b²\:=\:(a\:-\:b)\:(a\:+\:b)}}

{ }

\:\:\:\:\dashrightarrow\:{\underline{\boxed{\textsf{\textbf{\green{sin\:A\:-\:cos\:A\:=\:R.H.S.}}}}}}\:\red\bigstar

{ }

\begin{gathered}\qquad \qquad \qquad {\pmb{\pink {\bf Hence\:, \:Verified\:..\:!!\:}}}\\\\\end{gathered}

{ }

Answered by OoIndianJocKersoO
24

 \large\frac{ cosA }{ 1−tanA } + \frac{sinA}{1−cotA}

 \large\frac{cosA} {1− \frac{sinA}{ cosA}}+\frac{sinA}{ 1- \frac{cosA}{ sinA}}

 \large\frac{cos²A}{cosA−sinA} − \frac{sin²A}{cosA−sinA}

 \large\frac{cos²A−sin² A}{cosA−sinA}

 \large\frac{(cosA+sinA)(cosA−sinA)}{cosA−sinA}</p><p>

Answer = sin A + cos A

Similar questions