prove that (sinA/1-сosA--1-cosA/sinA)×
(cos A/1-sin A-1-sinA/cos A)=4
Attachments:
Answers
Answered by
5
Step-by-step explanation:
[sin²A-(1-cosA)²/sinA(1-cosA)] [cos²A-(1-sinA)²/cosA(1-sinA)]
=[sin²A-1+2cosA-cos²A/sinA(1-cosA)] [cos²A-1+2sinA-sin²A/cosA(1-sinA)]
=[sin²A-(sin²A+cos²A)+2cosA-cos²A/ sinA(1-cosA)][cos²A-(sin²A+cos²A)+2sinA-sin²A/cosA(1-sinA)]
=[2cosA-2cos²A/sinA(1-cosA)] [2sinA-2sin²A/cosA(1-sinA)]
=[2cosA(1-cosA)/sinA(1-cosA)] [2sinA(1-sinA)/cosA(1-sinA)]
=(2cosA/sinA)(2sinA/cosA)
=2tanA×2cotA
=4tanAcotA
=4
Attachments:
Similar questions
Math,
6 months ago
Geography,
6 months ago
English,
1 year ago
Accountancy,
1 year ago
Accountancy,
1 year ago