Prove that-- sinA(1+tanA)+cosA(1+cotA)=secA+cosecA
Answers
Answered by
0
Please mark it as brainliest...
Attachments:
Answered by
0
sinA(1+tanA)+cosA(1+cotA)
sin(1+sin/cos)+cos(1+cos/sin)
sinA + sin^2A/cosA + cosA + cos^2A/sinA => rewrite as:
= sinA + cos^2A/sinA + cosA + sin^2A/cosA
= (sin^2A + cos^2A)/sinA + (cos^2A + sin^2A)/cosA
= 1/sinA + 1/cosA
= cscA + secA
= secA + cosecA
pls mark as brainliest if it helps
sin(1+sin/cos)+cos(1+cos/sin)
sinA + sin^2A/cosA + cosA + cos^2A/sinA => rewrite as:
= sinA + cos^2A/sinA + cosA + sin^2A/cosA
= (sin^2A + cos^2A)/sinA + (cos^2A + sin^2A)/cosA
= 1/sinA + 1/cosA
= cscA + secA
= secA + cosecA
pls mark as brainliest if it helps
Similar questions