Math, asked by sAYAN1321, 11 months ago

Prove that (sinA - 2sin^3A)/(2cos^3A-cosA) =tanA​

Answers

Answered by koushikj401
3

LHS= sinA-2sin^3 A

2cos^3A-cosA

=sinA(1-sin^2A-sin^2A)

cosA(cos^2A+cos^2A-1)

=sinA(cos^2A-sin^2A)

cos A(cos^2A-sin^2A)

=sinA

cosA

=tanA

=RHS

mark me as brainliest please

Answered by sandy1816
1

 \frac{sina - 2 {sin}^{3} a}{2 {cos}^{3} a - cosa}  \\  \\  =  \frac{sina(1 - 2 {sin}^{2} a)}{cosa(2 {cos}^{2}a - 1) }  \\  \\  =  \frac{sina(cos2a)}{cosa(cos2a)}  \\  \\  =  \frac{sina}{cosa}  \\  \\  = tana

Similar questions