Prove that sina-2sin^3a/2cos^3a-cosa=tana
Answers
Answered by
25
sin a - 2 sin³a / 2 cos³a - cos a = tan a
________________________________________________________
Taking LHS
= sin a - 2 sin³a / 2 cos³a - cos a
= sin a (1-2 sin²a) / cos a (2 cos²a - 1)
= sin a (1-sin²a-sin²a) / cos a (cos²a+cos²a-1)
Then (1-sin²a = cos²a) and (cos²a-1 = -sin²a)
= sin a (cos²a-sin²a) / cos a (cos²a-sin²a)
Canceling (cos²a-sin²a) on both numerator and denominator.
= sin a / cos a
= tan a = RHS
_______________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
________________________________________________________
Taking LHS
= sin a - 2 sin³a / 2 cos³a - cos a
= sin a (1-2 sin²a) / cos a (2 cos²a - 1)
= sin a (1-sin²a-sin²a) / cos a (cos²a+cos²a-1)
Then (1-sin²a = cos²a) and (cos²a-1 = -sin²a)
= sin a (cos²a-sin²a) / cos a (cos²a-sin²a)
Canceling (cos²a-sin²a) on both numerator and denominator.
= sin a / cos a
= tan a = RHS
_______________________________________________________
☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Answered by
0
Answer:
Similar questions