Math, asked by SakshiDeshmukh1240, 1 year ago

Prove that sina-2sin^3a/2cos^3a-cosa=tana

Answers

Answered by nitthesh7
25
sin a - 2 sin³a / 2 cos³a - cos a  =  tan a
________________________________________________________

Taking LHS

= sin a - 2 sin³a / 2 cos³a - cos a

= sin a (1-2 sin²a) / cos a (2 cos²a - 1)

= sin a (1-sin²a-sin²a) / cos a (cos²a+cos²a-1)

Then (1-sin²a = cos²a) and (cos²a-1 = -sin²a)

= sin a (cos²a-sin²a) / cos a (cos²a-sin²a)

Canceling (cos²a-sin²a) on both numerator and denominator.

= sin a / cos a

= tan a = RHS
_______________________________________________________

☺ ☺ ☺ Hope this Helps ☺ ☺ ☺
Answered by sandy1816
0

Answer:

 \frac{sina - 2 {sin}^{3} a}{2 {cos}^{3} a - cosa}  \\  \\  =  \frac{sina(1 - 2 {sin}^{2} a)}{cosa(2 {cos}^{2}a - 1) }  \\  \\  =  \frac{sina(cos2a)}{cosa(cos2a)}  \\  \\  =  \frac{sina}{cosa}  \\  \\  = tana

Similar questions