Prove that sinA - 2Sin cube A÷2 Cos cube A -Cos A=tanA
Answers
Answered by
3
Step-by-step explanation:
sinA -2sin^3A ÷ 2cos^3A-cosA
sinA and cosA common
sinA(1-2sin^2A)÷cosA(2cos^2-1)
we put 1 = sin^2A+cos^2A
sinA(sin^2A+cos^2A-2sin^2A)÷cosA(2cos^2A-sin^2-cos^2A)
sinA(cos^2A-sin^2A)÷cosA(cos^2A-sin^2A)
we have sinA/cosA
we know that sinA/ cosA = tanA
Hence proved
Similar questions