Math, asked by ronitmenon13, 1 year ago

Prove that sinA- 2sin3 A/2cos3 A-cos A = tan A

Answers

Answered by Anonymous
17

\dfrac{sin \: A \:  -  \: 2 {sin}^{3} A}{2 {cos}^{2} A \:  -  \: cos \: A}  \:  =  \: tan \: A

____________ [GIVEN]

• We have to prove L.H.S. = R.H.S.

_______________________________

Take L.H.S.

=> \dfrac{sin \: A \:  -  \: 2 {sin}^{3} A}{2 {cos}^{2} A \:  -  \: cos \: A}

=> \dfrac{sin \: A  \: (1 \:  -  \: 2 {sin}^{2}A) }{cos \: A \: (2 {cos}^{2} A\:  -  \: 1)}

• 1 - 2sin²A = cos2A

• 2cos²A - 1 = cos2A

=> \dfrac{sin\:A}{cos\:A} × \dfrac{cos2A}{cos2A}

=> \dfrac{sin\:A}{cos\:A}

=> tan A

L.H.S = R.H.S.

______ [HENCE PROVED]

_______________________________

Similar questions