Math, asked by MartinHembrom, 9 months ago

prove that:sinA-2sin3A/2cos3A-cosA=tanA​

Answers

Answered by sanketj
1

R.H.S.

= tanA

L.H.S.

 =  \frac{sinA - 2 {sin}^{3}A }{2 {cos}^{3}A - cosA }  \\  =  \frac{sinA}{cosA} ( \frac{1 - 2 {sin }^{2}A }{ 2{cos}^{2}A - 1 } ) \\  = tanA( \frac{1 - 2(1 -  {cos}^{2}A) }{ 2{cos}^{2}A  - 1} ) \:  \:  \:  \:  \: \\ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   ... \: ( {sin}^{2}A  +  {cos}^{2}A = 1) \\  = \: tanA  (\frac{1 - 2 + 2 {cos}^{2} A}{2 {cos}^{2} A - 1} ) \\  = tanA( \frac{2 {cos}^{2}A - 1 }{2 {cos}^{2}A  - 1} ) \\  = tanA

= R.H.S.

•.• L.H.S. = R.H.S.

.•.  \frac{sinA - 2{sin}^{3}A}{2{cos}^{3}A - cosA} = tanA

... Hence Proved!

Similar questions