Prove that SinA - Cos A +1 /Sin A +Cos A -1 = Sec A +Tan A
Answers
Answered by
9
LHS = sinA-cosA+1/sinA+cosA-1
divide both numerator and denominator by cosA
[math]LHS = (tanA - 1 + secA) / (tanA + 1 - secA)[/math]
Now
[math]sec^2 A = 1 + tan^2 A [/math]
[math]sec^2 A - tan^2 A = 1[/math]
Using above relation at denominator of LHS
[math]LHS = (tanA - 1 + secA) / (tanA - secA + sec^2 A - tan^2 A)[/math]
[math]LHS = (tanA - 1 + secA) / ((secA - tanA) (-1 + secA + tanA))[/math]
[math] LHS = 1 / (secA-tanA)[/math]
[math]LHS = RHS[/math]
Hence Proved.
divide both numerator and denominator by cosA
[math]LHS = (tanA - 1 + secA) / (tanA + 1 - secA)[/math]
Now
[math]sec^2 A = 1 + tan^2 A [/math]
[math]sec^2 A - tan^2 A = 1[/math]
Using above relation at denominator of LHS
[math]LHS = (tanA - 1 + secA) / (tanA - secA + sec^2 A - tan^2 A)[/math]
[math]LHS = (tanA - 1 + secA) / ((secA - tanA) (-1 + secA + tanA))[/math]
[math] LHS = 1 / (secA-tanA)[/math]
[math]LHS = RHS[/math]
Hence Proved.
saadu9153:
tqs
Similar questions