Math, asked by tejaswini312, 11 months ago

Prove that :
sinA - cos A +1/ sinA + cos A -1=
1/secA - tanA​

Answers

Answered by mrcaptain71
9

Hlo fraandsss.....

Hope it will help u friend...

In 4th step it is written sec^2A-tan^2A instead of 1...

#ẞemyfreind....

✨✨

Attachments:
Answered by lublana
6

Answer with Step-by-step explanation:

Given:

LHS

\frac{sinA-cosA+1}{sinA+cosA-1}

Divide numerator and denominator with cos A

\frac{\frac{sinA}{cosA}-\frac{cosA}{cosA}+\frac{1}{cosA}}{\frac{sinA}{cosA}+\frac{cosA}{cosA}-\frac{1}{cosA}}

=\frac{tanA-1+secA}{tanA+1-secA}

Using the formula

tanA=\frac{sinA}{cosA}

secA=\frac{1}{cosA}

\frac{tanA+secA-1}{tanA-secA+(sec^2A-tan^2A)}

Using the identity

sec^2A-tan^2A=1

\frac{tanA+secA-1}{-1(-tanA+secA)+(secA-tanA)(secA+tanA)}

\frac{tanA+secA-1}{secA-tanA(secA+tanA-1)}

\frac{1}{secA-tanA}

LHS=RHS

Hence, proved.

#Learn more:

https://brainly.in/question/8593084:Answered by Piyu

Similar questions