Math, asked by anwessamohapatraxc, 5 hours ago

prove that sinA + cos A/sin A - cos A + sinA - cos A /sin A - cos A​

Answers

Answered by indirapenubarthi
0

Step-by-step explanation:

+

sin(a)+cos(a)

sin(a)−cos(a)

=

1−cos(a)

2

2

Solution :-

\sf \implies \dfrac{ \sin(a) + \cos(a) }{ \sin(a) - \cos(a) } + \dfrac{ \sin(a) - \cos(a) }{ \sin(a) + \cos(a) } = \dfrac{2}{1 - { \cos(a) }^{2} }⟹

sin(a)−cos(a)

sin(a)+cos(a)

+

sin(a)+cos(a)

sin(a)−cos(a)

=

1−cos(a)

2

2

Taking LHS :-

\sf \implies \dfrac{ \sin(a) + \cos(a) }{ \sin(a) - \cos(a) } + \dfrac{ \sin(a) - \cos(a) }{ \sin(a) + \cos(a) }⟹

sin(a)−cos(a)

sin(a)+cos(a)

+

sin(a)+cos(a)

sin(a)−cos(a)

\sf \implies \dfrac{( \sin(a) + \cos(a) {)}^{2} + ( { \sin(a) - \cos(a) })^{2} }{ \sin(a)^{2} - \cos(a)^{2} }⟹

sin(a)

2

−cos(a)

2

(sin(a)+cos(a))

2

+(sin(a)−cos(a))

2

\sf \implies \: \dfrac{ { {\sin(a)}^{2} + { \cos(a) }^{2} + 2 \sin(a) \cos(a) + { \sin(a) }^{2} + { \cos(a) }^{2} - 2 \sin(a) \cos(a) }^{2} }{ { \sin(a) }^{2} - { \cos(a) }^{2} }⟹

sin(a)

2

−cos(a)

2

sin(a)

2

+cos(a)

2

+2sin(a)cos(a)+sin(a)

2

+cos(a)

2

−2sin(a)cos(a)

2

\sf \implies \: we \: know \: that \: { \sin(a) }^{2} + { \cos(a) }^{2} = 1⟹weknowthatsin(a)

2

+cos(a)

2

=1

\sf \implies \: \dfrac{ { 1 + 2 \sin(a) \cos(a) + 1 - 2 \sin(a) \cos(a) }}{ { \sin(a) }^{2} - { \cos(a) }^{2} }⟹

sin(a)

2

−cos(a)

2

1+2sin(a)cos(a)+1−2sin(a)cos(a)

\sf \implies \: \dfrac{ { 2 + 2 \sin(a) \cos(a) - 2 \sin(a) \cos(a) } }{ { \sin(a) }^{2} - { \cos(a) }^{2} }⟹

sin(a)

2

−cos(a)

2

2+2sin(a)cos(a)−2sin(a)cos(a)

\sf \implies \: \dfrac{ { 2 + \cancel{2 \sin(a) \cos(a) } \cancel {- 2 \sin(a) \cos(a) } } }{ { \sin(a) }^{2} - { \cos(a) }^{2} }⟹

sin(a)

2

−cos(a)

2

2+

2sin(a)cos(a)

−2sin(a)cos(a)

\sf \implies \: \dfrac{ { 2 }}{ { \sin(a) }^{2} - { \cos(a) }^{2} }⟹

sin(a)

2

−cos(a)

2

2

\sf \implies \: we \: know \: that \: { \sin(a) }^{2} =1 - { \cos(a) }^{2}⟹weknowthatsin(a)

2

=1−cos(a)

2

\sf \implies \: \dfrac{ { 2 }}{ 1 - { \cos(a) }^{2} - { \cos(a) }^{2} }⟹

1−cos(a)

2

−cos(a)

2

2

\sf \implies \: \dfrac{ { 2 }}{ 1 - 2 { \cos(a) }^{2} }⟹

1−2cos(a)

2

2

Similar questions