Math, asked by labhsinghjasrotia5, 11 months ago

Prove that: SinA - cosA+ 1/ sinA+cosA-1=1 / secA-tanA​

Answers

Answered by falgunigaikwad123
1

Step-by-step explanation:

I hope my answer is helpful for you

Attachments:
Answered by rushilrushil95
1

Answer:LHS=RHS

Step-by-step explanation:

LHS = sinA - cosA+1/sinA +cosA -1

= tanA -1 +secA / tanA+1 - secA ------------------- (Dividing by cos θ )

= (tanA +secA)-1 / (tanA-secA)+1

= {(tanA+secA-1)}(tanA-secA) / {(tanA+secA +1)}(tanA-secA)

=(tan^2 A -sec^2 A) - (tanA - secA) / (tanA + secA +1)(tanA - secA)

=-1-tanA+secA / (tanA+ secA +1) (tanA -secA)

=-1 / tanA-secA

= 1 / secA -tanA=RHS

Similar questions