Prove that :
sinA - cosA + 1 / sinA + cosA - 1 = 1 / secA - tanA
Answers
Answer:
L.H.S=R.H.S
Step-by-step explanation:
We have been given that
\frac{sinA - cosA + 1}{sinA + cosA - 1} = \frac{1}{secA - tanA}
Let, L.H.S
\frac{sinA - cosA + 1}{sinA + cosA - 1}
\frac{\frac{sinA}{cosA} - \frac{cosA}{cosA} + \frac{1}{cosA}}{\frac{sinA}{cosA} + \frac{cosA}{cosA} - \frac{1}{cosA}}
\frac{tanA - 1 + secA}{tanA + 1 - secA}
Formula, sec^{2}A - tan^{2}A = 1
\frac{tanA + secA - sec^{2}A - tan^{2}A}{tanA + 1 - secA}
\frac{tanA + secA - [(secA - tanA)(secA + tanA)]}{tanA + 1 - secA}
\frac{tanA + secA [1 - (secA - tanA)]}{tanA + 1 - secA}
[1 - (secA - tanA)] cancel out
Then, {tanA + secA
Multiple and divide by secA - tanA
Then, \frac{(tanA + secA)\times ( secA - tanA )}{ secA - tanA }
\frac{sec^{2}A - tan^{2}A}{ secA - tanA }
Using this formula, sec^{2}A - tan^{2}A = 1
\frac{1}{ secA - tanA }
R.H.S
Hence , the correct proof is in the attachment
Hope it's helpful .....