prove that sinA-cosA+1/sinA+cosA-1=1/secA-TanA
Answers
Answered by
0
Answer:
How do I prove sinA-cosA+1/sinA+cosA-1=1/secA-tanA?
LHS = sinA-cosA+1/sinA+cosA-1
divide both numerator and denominator by cosA
LHS=(tanA−1+secA)/(tanA+1−secA)
Now
sec2A=1+tan2A
sec2A−tan2A=1
Using above relation at denominator of LHS
LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)
LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))
LHS=1/(secA−tanA)
LHS=RHS
Hence Proved.
Answered by
1
Answer:
Mark it as brainliest
Step-by-step explanation:
SinA-CosA+1/SinA+CosA-1
Divide num and den by cosA
TanA+SecA-1/TanA-secA+1
TanA+Seca-1/tan-seca+sec²a-tan²a{sec²a-tan²a=1}
TanA+Seca-1/tan-seca+(seca-tana)(seca+tana)
TanA+Seca-1/seca-tana(seca+tana-1)
TanA+Seca-1/seca-tana(seca+tana-1)
1/seca-tana
Similar questions