Math, asked by Smritishaktawat, 1 year ago

Prove that sinA-cosA+1÷sinA+cosA-1 = 1÷secA-tanA

Answers

Answered by sandy1816
213

Answer:

your answer attached in the photo

Attachments:
Answered by pulakmath007
1

 \displaystyle \sf{ \frac{ \sin A -  \cos A   + 1}{\sin A  +   \cos A   -  1} =  \frac{1}{ \sec A \:  -  \tan A}  } \:is  \:  \:proved

Given :

 \displaystyle \sf{ \frac{ \sin A -  \cos A   + 1}{\sin A  +   \cos A   -  1} =  \frac{1}{ \sec A \:  -  \tan A}  }

To find :

To prove the expression

Solution :

Step 1 of 2 :

Write down the given expression

Here the given expression is

 \displaystyle \sf{ \frac{ \sin A -  \cos A   + 1}{\sin A  +   \cos A   -  1} =  \frac{1}{ \sec A \:  -  \tan A}  }

Step 2 of 2 :

Prove the expression

LHS

 \displaystyle \sf{ =  \frac{ \sin A -  \cos A   + 1}{\sin A  +   \cos A   -  1}  }

Dividing numerator and denominator both by cos A we get

 \displaystyle \sf{ =  \frac{ \tan A - 1 +  \sec A  }{\tan A  +  1 -  \sec A   }  }

 \displaystyle \sf{ =  \frac{ \tan A - 1 +  \sec A  }{\tan A   -  \sec A + 1   }  }

 \displaystyle \sf{ =  \frac{ \tan A - 1 +  \sec A  }{(\tan A   -  \sec A )  - ( { \tan}^{2}  A -  { \sec}^{2} A )  }  }

 \displaystyle \sf{ =  \frac{ \tan A - 1 +  \sec A  }{(\tan A   -  \sec A )  - (\tan A   +   \sec A )  (\tan A   -  \sec A )  }  }

 \displaystyle \sf{ =  \frac{ \tan A - 1 +  \sec A  }{(\tan A   -  \sec A )   (1 - \tan A    -  \sec A )  }  }

 \displaystyle \sf{ =  \frac{ \tan A  +  \sec A - 1  }{(\sec A - \tan A   )   (\tan A  +  \sec A - 1 )  }  }

 \displaystyle \sf{ =  \frac{1  }{\sec A - \tan A  }  }

= RHS

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. value of(1+tan13)(1+tan32)+(1+tan12)(1+tan33)

https://brainly.in/question/23306292

2. Find the value of p if 3cosec2A(1+COSA)(1 - COSA) =p

https://brainly.in/question/23381523

#SPJ3

Similar questions