Math, asked by shivalipuri7, 5 months ago

prove that sina-cosa+1/sina+cosa-1=1/seca-tana​

Answers

Answered by EishanKhandait
1

Answer:

Proved

Step-by-step explanation:

Hope it helps. Mark me as brainliest

Attachments:
Answered by sandy1816
1

 \frac{ \sin(A) -  \cos(A) + 1  }{ \sin(A)  +  \cos(A)  - 1}  \\  \\  =  \frac{ \frac{ \sin(A)   -  \cos(A)  + 1  }{ \cos(A) } }{ \frac{ \sin(A) +  \cos(A)  - 1 }{ \cos(A) } }  \\  \\  =  \frac{ \tan(A) +  \sec(A)  - 1 }{ \tan(A) -  \sec(A)  + 1  } \\ \\ =  \frac{ \tan(A)  +  \sec(A)  - 1}{( { \sec }^{2}A  -  { \tan}^{2}A) - ( \sec A  -  \tan  A)}  \\  \\  =  \frac{ \tan A +  \sec A - 1}{( \sec A -  \tan A)( \sec A +  \tan A - 1)}  \\  \\  =  \frac{1}{ \sec(A)   -  \tan(A) }

Similar questions