Math, asked by sarangimilan47, 6 months ago

Prove that; sinA-cosA+1/sinA+cosA-1 = 1/secA-tanA​

Attachments:

Answers

Answered by nareshrawat170479
0

so please follow me

and mark as brainilist

Attachments:
Answered by sandy1816
0

 \frac{sinA - cosA + 1}{sinA + cosA - 1}  \\  \\  =  \frac{ \frac{sinA - cosA + 1}{cosA} }{ \frac{sinA + cosA - 1}{cosA} }  \\  \\  =  \frac{tanA + secA - 1}{tanaA- secA + 1}  \\  \\  =  \frac{tanA + secA - 1}{( {sec}^{2} A -  {tan}^{2}A) - (secA - tanA) }  \\  \\  =  \frac{tanA + secA - 1}{(secA - tanA)(secA + tanA - 1)}  \\  \\  =  \frac{1}{secA - tanA}

Similar questions