Prove that sinA-cosA+1÷sinA+cosA-1 = 1÷secA-tanA
Answers
Answered by
1
LHS = sinA-cosA+1/sinA+cosA-1
divide both numerator and denominator by cosA
LHS=(tanA−1+secA)/(tanA+1−secA)
LHS=(tanA−1+secA)/(tanA+1−secA)
Now
se
c
2
A=1+ta
n
2
A
sec2A=1+tan2A
se
c
2
A−ta
n
2
A=1
sec2A−tan2A=1
Using above relation at denominator of LHS
LHS=(tanA−1+secA)/(tanA−secA+se
c
2
A−ta
n
2
A)
LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)
LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))
LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))
LHS=1/(secA−tanA)
LHS=1/(secA−tanA)
LHS=RHS
LHS=RHS
Hence Proved.
Similar questions