Math, asked by svy2005, 3 months ago

Prove that: sinA- cosA+1/ sinA + cosA -1 = 1/secA -tanA​

Answers

Answered by MoodyCloud
28

To prove :-

 \sf \dfrac{sin \: A - cos \: A + 1}{sin \: A + cos \: A - 1} = \dfrac{1}{sec \: A - tan \: A}

Prove :-

We have

 \sf \dfrac{sin \: A - cos \: A + 1}{sin \: A + cos \: A - 1} = \dfrac{1}{sec \: A - tan \: A}

Take L.H.S :

 \sf \implies \dfrac{sin \: A - cos \: A + 1}{sin \: A + cos \: A - 1}

⠀⠀⠀⠀⠀

  • First divide 1/cos A to both numerator and denominator.

⠀⠀⠀⠀⠀

 \implies \sf \dfrac{ \bigg( sin \: A - cos \: A + 1\bigg) \times \dfrac{1}{cos \: A}}{\bigg( sin \: A + cos \: A - 1 \bigg) \times \dfrac{1}{cos \: A}}

⠀⠀⠀⠀⠀

 \implies \sf \dfrac{\dfrac{sin \: A}{cos \: A} - \dfrac{cos \: A}{cos \: A} + \dfrac{1}{cos \: A}}{ \dfrac{sin \: A}{cos \: A}+ \dfrac{cos \: A}{cos \: A} - \dfrac{1}{cos \: A}}

⠀⠀⠀⠀⠀

  • Sin A/cos A = tan A and 1/cos A = sec A

⠀⠀⠀⠀⠀

 \implies \sf \dfrac{tan \: A - 1 + sec \: A}{tan \: A + 1 - sec \: A}

⠀⠀⠀⠀⠀

  • Rearrange.

⠀⠀⠀⠀⠀⠀⠀⠀

 \implies \sf \dfrac{tan \: A + sec \: A - 1}{tan \: A - sec \: A + 1}

⠀⠀⠀⠀⠀

  • sec² A - tan² A = 1

⠀⠀⠀⠀⠀

 \implies \sf \dfrac{tan \: A + sec \: A - 1}{(tan \: A - sec \: A) + ( sec^{2} \: A - tan^{2} \: A )}

⠀⠀⠀⠀⠀

  • In denominator, take minus common from first bracket and use a² - b² = (a + b)(a - b) in second bracket.

⠀⠀⠀⠀

 \implies \sf \dfrac{tan \: A + sec \: A - 1}{-(sec \: A - tan \: A) + (sec \: A - tan \: A)(sec \: A + tan \: A)}

  • Now, Take sec A - tan A common from denominator.

⠀⠀⠀⠀⠀

 \implies \sf \dfrac{\cancel{tan \: A + sec \: A - 1}}{(sec \: A - tan \: A) (\cancel{-1 + sec \: A + tan \: A})}

⠀⠀⠀⠀⠀

 \implies \sf \dfrac{1}{sec \: A - tan \: A}

⠀⠀⠀⠀⠀

 \implies \sf R.H.S

Hence, Proved!!


amansharma264: Awesome
MoodyCloud: Thank you :D
VishalSharma01: Awesome Maam :)
Answered by SuitableBoy
41

{\large{\underline{\underline{\bf{Question:-}}}}}

 \\

Q) Price that :

 \sf \dfrac{sin \: a - cos \: a + 1}{sin \: A + cos \: A- 1}  =  \dfrac{1}{sec \: A - tan \: A}

 \\

{\large{\bf{\underline{\underline{Required\:Solution:-}}}}}

 \\

Taking LHS

  \\

 \colon \rightarrow \sf \:  \dfrac{sin \: A - cos \: A + 1}{sin \: A + cos \: A - 1}

  • Divide every term by “ cos A ” .

  \colon \rightarrow \sf \:  \dfrac{ \dfrac{sin \: A}{cos \: A}  -  \dfrac{cos \: A}{cos \: A} +  \dfrac{1}{cos \: A}  }{ \dfrac{sin \: A}{cos \: A}  +  \dfrac{cos \: A}{cos \: A} -  \dfrac{1}{cos \: A}  }

We know,

  •  \rm \:  \dfrac{sin \:  \alpha }{cos \:  \alpha }  = tan \:  \alpha
  •  \rm \:  \dfrac{1}{cos \:  \alpha }  = sec \:  \alpha

Changing the terms which can be changed..

 \colon \rightarrow \sf \:  \dfrac{tan \: A -1 + sec \: A}{tan \: A + 1 - sec \: A}

Regrouping the terms ..

 \colon  \rightarrow \sf \:  \dfrac{tan \: A + sec \: A - 1}{tan \: A- sec \: A + 1}

We know,

  •  \rm \:  1 = {sec}^{2} \:   \alpha    - {tan}^{2}  \:  \alpha

Change the “ 1 ” in denominator.

 \colon \rightarrow \sf \:  \dfrac{tan \: A+ sec \: A - 1}{(tan \: A - sec \: A) + ( {sec}^{2} \: A -  {tan}^{2}   \: A)}  \\

Using

  • x² - y² = (x+y) (x-y)

 \colon \rightarrow \sf \:  \dfrac{tan \: A + sec \: A - 1}{(tan \: A - sec \:A) + (sec \: A + tan \: A)(sec \: A - tan \: A)}  \\

  • Take minus (-) common from the first term of denominator.

 \colon \rightarrow \sf \:  \dfrac{(tan \: A + sec \: A - 1)}{ - (sec \: A - tan \: A) + (sec \: A - tan \: A)(sec \: A + tan \: A)}  \\

  • Take (sec A - tan A) common from the denominator.

 \colon \rightarrow \sf \:  \dfrac{(tan \: A + sec \: A - 1)}{(sec \: A - tan \: A)( - 1 + sec \: A+ tan \: A)}  \\

  • Rearranging the terms and cutting the unnecessary terms.

 \colon \rightarrow \sf \:  \dfrac{ \cancel{(tan \: A + sec \: A - 1)}}{(sec \: A- tan \: A) \cancel{(tan \: A + sec \: A - 1)}}   \\

 \colon \rightarrow \red{ \sf \:  \dfrac{1}{sec \: A  - tan \: A}   }

  • As you can see, it is equal to RHS

so,

 \star \:   \boxed{  \pink{\tt{L.H.S.= R. H. S. }}} \:  \therefore \green{ \bf \: Proved \: }

 \\

_____________________________


MoodyCloud: Doing good :)
Similar questions