Math, asked by mariyatahir2005, 1 month ago

Prove that sinA-cosA+1 / sinA+cosA-1 = 1/secA-tanA​

Answers

Answered by sandy1816
0

Answer:

 \frac{ \sin(A) -  \cos(A) + 1  }{ \sin(A)  +  \cos(A)  - 1}  \\  \\  =  \frac{ \frac{ \sin(A)   -  \cos(A)  + 1  }{ \cos(A) } }{ \frac{ \sin(A) +  \cos(A)  - 1 }{ \cos(A) } }  \\  \\  =  \frac{ \tan(A) +  \sec(A)  - 1 }{ \tan(A) -  \sec(A)  + 1  }

 =  \frac{ \tan(A)  +  \sec(A)  - 1}{( { \sec }^{2}A  -  { \tan}^{2}A) - ( \sec A  -  \tan  A)}  \\  \\  =  \frac{ \tan A +  \sec A - 1}{( \sec A -  \tan A)( \sec A +  \tan A - 1)}  \\  \\  =  \frac{1}{ \sec(A)   -  \tan(A) }

Similar questions