Prove that sinA-cosA+1/sinA-cosA-1=1/secA-tanA using sec²A=1+tan²A
Answers
Step-by-step explanation:
LHS...
sinA+cosA−1
sinA−cosA+1
\text{First we have to multiply both the numerator and denominator with $\sec A$}First we have to multiply both the numerator and denominator with secA
\begin{gathered}\displaystyle \begin{aligned}\Longrightarrow\ \ &\frac{\sin A-\cos A+1}{\sin A+\cos A-1}\\ \\ \Longrightarrow\ \ &\frac{(\sin A-\cos A +1)\sec A}{(\sin A+\cos A-1)\sec A}\\ \\ \Longrightarrow\ \ &\frac{\sin A \cdot \sec A-\cos A \cdot \sec A+\sec A}{\sin A \cdot \sec A+\cos A \cdot \sec A-\sec A}\\ \\ \Longrightarrow\ \ &\frac{\tan A-1+\sec A}{\tan A+1-\sec A}\end{aligned}\end{gathered}
⟹
⟹
⟹
⟹
sinA+cosA−1
sinA−cosA+1
(sinA+cosA−1)secA
(sinA−cosA+1)secA
sinA⋅secA+cosA⋅secA−secA
sinA⋅secA−cosA⋅secA+secA
tanA+1−secA
tanA−1+secA
\begin{gathered}\text{Now, multiplying both the numerator and the denominator with}\\ \text{$(\sec A-\tan A)$,}\end{gathered}
Now, multiplying both the numerator and the denominator with
(secA−tanA),
\begin{gathered}\displaystyle \begin{aligned}\Longrightarrow\ \ &\frac{\tan A-1+\sec A}{\tan A+1-\sec A}\\ \\ \Longrightarrow\ \ &\frac{(\tan A+\sec A-1)(\sec A-\tan A)}{(\tan A-\sec A+1)(\sec A-\tan A)}\end{aligned}\end{gathered}
⟹
⟹
tanA+1−secA
tanA−1+secA
(tanA−secA+1)(secA−tanA)
(tanA+secA−1)(secA−tanA)
\begin{gathered}\begin{aligned}\Longrightarrow\ \ &\frac{\sec^2A-\tan^2A-\sec A+\tan A}{(\tan A-\sec A+1)(\sec A-\tan A)}\\ \\ \Longrightarrow\ \ &\frac{1+\tan^2A-\tan^2A-\sec A+\tan A}{(\tan A-\sec A+1)(\sec A-\tan A)}\ \ \ \ \ \ \ \ [\because\ \sec^2A=1+\tan^2A]\\ \\ \Longrightarrow\ \ &\frac{\tan A-\sec A+1}{(\tan A-\sec A+1)(\sec A-\tan A)}\\ \\ \Longrightarrow\ \ &\frac{1}{\sec A-\tan A}\\ \\ \\ \Longrightarrow\ \ &\large \textsf{...RHS}\end{aligned}\end{gathered}
⟹
⟹
⟹
⟹
⟹
(tanA−secA+1)(secA−tanA)
sec
2
A−tan
2
A−secA+tanA
(tanA−secA+1)(secA−tanA)
1+tan
2
A−tan
2
A−secA+tanA
[∵ sec
2
A=1+tan
2
A]
(tanA−secA+1)(secA−tanA)
tanA−secA+1
secA−tanA
1
...RHS
\huge \textsc{\underline{\underline{Hence Proved!!!}}}\textsc
HenceProved!!!