prove that sinA - cosA + 1/ sinA + cosA -1 = 1 / secA - tanA using the identity sec^2A = 1 + tan^2A.
Answers
Answered by
9
Answer:
Step-by-step explanation:
Attachments:
Answered by
3
Answer:
divide both numerator and denominator by cosA
LHS=(tanA−1+secA)/(tanA+1−secA)
Now
sec2A=1+tan2A
sec2A−tan2A=1
Using above relation at denominator of LHS
LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)
LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))
LHS=1/(secA−tanA)
LHS=RH
Step-by-step explanation:
Similar questions