Math, asked by padhmalii188, 10 months ago

prove that sinA - cosA + 1/ sinA + cosA -1 = 1 / secA - tanA using the identity sec^2A = 1 + tan^2A.

Answers

Answered by gorlanagaraju5
9

Answer:

Step-by-step explanation:

Attachments:
Answered by MSD0
3

Answer:

divide both numerator and denominator by cosA

LHS=(tanA−1+secA)/(tanA+1−secA)

Now

sec2A=1+tan2A

sec2A−tan2A=1

Using above relation at denominator of LHS

LHS=(tanA−1+secA)/(tanA−secA+sec2A−tan2A)

LHS=(tanA−1+secA)/((secA−tanA)(−1+secA+tanA))

LHS=1/(secA−tanA)

LHS=RH

Step-by-step explanation:

Similar questions