Math, asked by mysticd, 1 year ago

Prove that
(sinA-cosA+1)/(sinA+cosA-1) = 1/(secA-tanA) using the identity Sec²A = 1+tan²A.

Answers

Answered by mohmmedsufiyanali19
10

hey mate your answer plz mark as brainlist

Attachments:
Answered by shadowsabers03
9

\displaystyle \begin{aligned}&\large \textsf{LHS...}\\ \\ \Longrightarrow\ \ &\frac{\sin A-\cos A+1}{\sin A+\cos A-1}\end{aligned}

\text{First we have to multiply both the numerator and denominator with $\sec A$}

\displaystyle \begin{aligned}\Longrightarrow\ \ &\frac{\sin A-\cos A+1}{\sin A+\cos A-1}\\ \\ \Longrightarrow\ \ &\frac{(\sin A-\cos A +1)\sec A}{(\sin A+\cos A-1)\sec A}\\ \\ \Longrightarrow\ \ &\frac{\sin A \cdot \sec A-\cos A \cdot \sec A+\sec A}{\sin A \cdot \sec A+\cos A \cdot \sec A-\sec A}\\ \\ \Longrightarrow\ \ &\frac{\tan A-1+\sec A}{\tan A+1-\sec A}\end{aligned}

\text{Now, multiplying both the numerator and the denominator with}\\ \text{$(\sec A-\tan A)$,}

\displaystyle \begin{aligned}\Longrightarrow\ \ &\frac{\tan A-1+\sec A}{\tan A+1-\sec A}\\ \\ \Longrightarrow\ \ &\frac{(\tan A+\sec A-1)(\sec A-\tan A)}{(\tan A-\sec A+1)(\sec A-\tan A)}\end{aligned}

\begin{aligned}\Longrightarrow\ \ &\frac{\sec^2A-\tan^2A-\sec A+\tan A}{(\tan A-\sec A+1)(\sec A-\tan A)}\\ \\ \Longrightarrow\ \ &\frac{1+\tan^2A-\tan^2A-\sec A+\tan A}{(\tan A-\sec A+1)(\sec A-\tan A)}\ \ \ \ \ \ \ \ [\because\ \sec^2A=1+\tan^2A]\\ \\ \Longrightarrow\ \ &\frac{\tan A-\sec A+1}{(\tan A-\sec A+1)(\sec A-\tan A)}\\ \\ \Longrightarrow\ \ &\frac{1}{\sec A-\tan A}\\ \\ \\ \Longrightarrow\ \ &\large \textsf{...RHS}\end{aligned}

\huge \textsc{\underline{\underline{Hence Proved!!!}}}

Similar questions