Math, asked by ShanayaKapoor12, 11 months ago

Prove that
SinA - cosA+1/sinA+cosA-1=cosA/1-sinA
Please answer it with clear steps

Answers

Answered by Anonymous
0

welcome to the concept of trignometry

trignometry formulas used:

1 + tan {}^{2} a = sec {}^{2} a

and

si n {}^{2} a + cos {}^{2} a = 1

and algebra formula :

a {}^{2}  - b { }^{2}  = (a - b)(a + b)

first solve LHS then problem become easy .....

I hope my answer help you ✌️✌️.

Mark answer as brainlist ❤️

Attachments:
Answered by sandy1816
0

 \frac{sina - cosa + 1}{sina + cosa - 1}  \\  \\  =  \frac{ \frac{sina - cosa + 1}{cosa} }{ \frac{sina + cosa - 1}{cosa} }  \\  \\  =  \frac{tana + seca - 1}{tana - seca + 1}  \\  \\  =  \frac{tana + seca - 1}{( {sec}^{2} a -  {tan}^{2}a) - (seca - tana) }  \\  \\  =  \frac{tana + seca - 1}{(seca - tana)(seca + tana - 1)}  \\  \\  =  \frac{1}{seca - tana}  \\  \\  =  \frac{1}{ \frac{1 - sina}{cosa} }  \\  \\  =  \frac{cosa}{1 - sina}

Similar questions