prove that (sinA+cosA)^2+(cosA+secA)^2 = 7+tan^2A +cot^2 A
Answers
Answered by
0
Answer:
""* tnn$:,&%!+÷/€¥₩(•●■☆《¡◇>●°☆《¡♧◇》¤☆●□◇ fav GM mi
Answered by
7
mark me as a brainliest
solution;
l.h.s
=(sinA+cosecA)²+(cosA+secA)²
=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA
=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA
=1+cosec²A+sec²A+2+2
=5+(1+cot²A)+(1+tan²A)
=7+tan²A+cot²A proved
formula used
1+tan²A=sec²A
1+cot²A=cosec²A
sin²A+cos²A=1
cosecA=1/sinA
secA=1/cosA
Similar questions