prove that (sinA cosA)^2 + (sinA-cosA)^2 = 2
Answers
Answered by
95
Hello,
(sinA+cosA)² +(sinA-cosA)²=;
= sin²A+2sinAcosA+cos²A+ sin²A-2sinAcosA+cos²A;
=sin²A+cos²A+sin²A+cos²A;
being sen²A+cos²A=1, we have that:
=1+1;
= 2
bye :-)
(sinA+cosA)² +(sinA-cosA)²=;
= sin²A+2sinAcosA+cos²A+ sin²A-2sinAcosA+cos²A;
=sin²A+cos²A+sin²A+cos²A;
being sen²A+cos²A=1, we have that:
=1+1;
= 2
bye :-)
Answered by
15
Answer:
Hey Mate ✌️
Here is ur answer...
Step-by-step explanation:
(sinA+cosA)^2+(sinA-cos)^2=2
L.H.S=sin^2A+cos^2+2×sinAcosA + sin^2+cos^2-2×sinAcosA
[Therefore,sinA×cos=1]
=sinA^2+cos^2+sin^2+cos^2
[Therefore,sin^2A+cos^2A=1]
=1 + 1
=2
L.H.S=R.H.S
Hence Proved
Hope it will help Uhhh....
Similar questions