Math, asked by chhotraAleemanamana, 1 year ago

prove that (sinA cosA)^2 + (sinA-cosA)^2 = 2

Answers

Answered by alessre
95
Hello,
(sinA+cosA)² +(sinA-cosA)²=;
= sin²A+2sinAcosA+cos²A+ sin²A-2sinAcosA+cos²A;
=sin²A+cos²A+sin²A+cos²A;
being sen²A+cos²A=1, we have that:
=1+1;
= 2 

bye :-)
Answered by bngupta52
15

Answer:

Hey Mate ✌️

Here is ur answer...

Step-by-step explanation:

(sinA+cosA)^2+(sinA-cos)^2=2

L.H.S=sin^2A+cos^2+2×sinAcosA + sin^2+cos^2-2×sinAcosA

[Therefore,sinA×cos=1]

=sinA^2+cos^2+sin^2+cos^2

[Therefore,sin^2A+cos^2A=1]

=1 + 1

=2

L.H.S=R.H.S

Hence Proved

Hope it will help Uhhh....

Similar questions