Math, asked by ska479364, 1 year ago


prove that sinA +cosA = cosA/1-tanA + sinA / 1- cotA​

Answers

Answered by jajooaditya42
0

Answer:

just change rhs by putting tanA=sinA/cosA and put cotA=cosA/sinA and then solve....hope this helps

Answered by sandy1816
1

 \frac{sinA}{1 - cotA}  +  \frac{cosA}{1 - tanA}  \\  \\  =  \frac{ {sin}^{2}A }{sinA - cosA}  +  \frac{ {cos}^{2}A }{cosA - sinA}  \\  \\  =  \frac{ {sin}^{2}A }{sinA - cosA}  -  \frac{ {cos}^{2} A}{sinA - cosA}  \\  \\  =  \frac{ {sin}^{2}A -  {cos}^{2}  A}{sinA - cosA}  \\  \\  = sinA + cosA

Similar questions