Math, asked by Bhavleeen, 1 year ago

Prove that
SinA/cosA+cosecA = sinA/cotA-cosecA +2
(+2 is written with whole Right hand side)

Answers

Answered by chandresh126
0

Answer:

Hey Mate,

LHS = \frac{sinA}{cotA} +cosecA

= \frac{SinA}{(cosA/sinA+1/sinA)}

= \frac{SinA}{(cosA+1)/sinA}

= \frac{Sin^{2}A}{(1+cosA)}

= \frac{ (1-cos^{2}A)}{(1+cosA)}

= \frac{ ( 1+cosA)(1-cosA)}{(1+cosA)}

= 1 - cosA

= 2-1-cosA

= 2 - (1 + cosA)

= 2- \frac{(1+cosA)(1-cosA)}{(1-cosA)}

= \frac{ (1-cos^{2}A)}{-(1-cosA)}+2

= \frac{ si^{2}A}{(cosA-1)}+2

= \frac{sinA}{(cosA-1)/sinA}+2

= \frac{sinA}{(cosA/sinA-1/sinA)}+2

= \frac{ sinA}{cotA-cosecA}+2 = RHS

Similar questions