prove that sina+cosa/sina-cosa+sina-cosa/sina+cosa=1/sin^2a-cos^2a=2/1-2 cos^2a=2sec^2a/tan^2a-1
Answers
Answered by
0
Hope it may help you...
Attachments:
Answered by
0
Answer:3 answers · Mathematics
Best Answer
LHS=
= (sinA+cosA)^2 + (sinA-cosA)^2 / (sin^2A - cos^A)
= 2 / ( (1-cos^2A) - cos^2A) ---------------> sin^2A + cos^2A = 1
Divide Numerator (Nr) and Denominator (Dr) by 'cos^2A'
= (2/cos^2A) / ((1 - 2cos^2A) / cos^2A)
Nr ==> 2sec^2A
Dr => (1/cos^2A) - (2cos^2A/cos^2A)
But sec^2A = tan^2A + 1
Hence Dr ==> tan^2A + 1 - 2
Dr = tan^2A -1
Hence LHS = Nr/Dr = RHS
Similar questions
Social Sciences,
7 months ago
English,
7 months ago
Science,
1 year ago
Science,
1 year ago
Science,
1 year ago