Prove that sinA+cosA /sinA-cosA sinA-cosA/ sinA+cosA=2/sin square-cos square=2/2 sin squareD-1=2/1-2 cos square
Answers
Answered by
3
(sinA+cosA)/(sinA-cosA) -(sinA-cosA)/(sinA+cosA)
=[(sinA+cos A)^2-(sinA-cosA)^2]/(sinA-cosA)(sinA+COS A)
=2(sin^2A+cos^2A)/(sin^2-cos^2A)
=2/(sin^2A-cos^2A)
=2/(1-cos^2A-cos^2A)
=2/(1-2cos^2A) or 2/[sin^2A-(1-cos^2A)]
=2/(2sin^2A-1).
Hope this helps you. please mark as brainliest ans.
=[(sinA+cos A)^2-(sinA-cosA)^2]/(sinA-cosA)(sinA+COS A)
=2(sin^2A+cos^2A)/(sin^2-cos^2A)
=2/(sin^2A-cos^2A)
=2/(1-cos^2A-cos^2A)
=2/(1-2cos^2A) or 2/[sin^2A-(1-cos^2A)]
=2/(2sin^2A-1).
Hope this helps you. please mark as brainliest ans.
Answered by
4
here's your ans dude
Attachments:
Similar questions