Math, asked by mdayaan2307, 6 months ago

prove that (sinA-cosec)²+(cosA-sec)²=cot²+tanA-1​

Answers

Answered by Ataraxia
12

To Prove :-

\sf (sinA-cosecA)^2+(cosA-secA)^2= cot^2+tan^2A-1

Solution :-

\sf L.H.S = (sinA-cosecA)^2+(cosA-secA)^2

         = \sf sin^2A+cosec^A-2sinAcosecA+cosA^2+sec^2A-2cosAsecA

\bullet \bf \ sin^2A+cos^2A = 1 \\\\\ \bullet \ cosecA = \dfrac{1}{sinA} \\\\ \bullet \ secA = \dfrac{1}{cosA}

         =\sf  cosec^2A+sec^2A+1 - 2 \times sin A \times \dfrac{1}{sinA}- 2 \times cosA  \times \dfrac{1}{cosA} \\\\= cosec^2A+sec^2A+1-2-2 \\\\= cosec^2A+sec^2A-3

\bullet \bf \ cosec^2A = 1+cot^2A \\\\\bullet \ sec^2A = 1+tan^2A

            = \sf 1+cot^2A+1+tan^2A-3 \\\\= cot^2A+tan^2A+2-3 \\\\= cot^2A+tan^2A-1 \\\\= R.H.S

Hence proved.

Answered by Anonymous
5

Kindly see the above attachment.

Hope the writing is understandable.

@Itzbeautyqueen23

Hope it's helpful.

Thank you :)

Attachments:
Similar questions