prove that (sinA+cosecA)^2+(cos A+secA)^2=7+tanA^2+cotA^2
Answers
Answered by
2
namaste ✔.
(sinA + cosecA)² + (cosA + secA ) ²
sin²A + cosec²A + 2sinA×cosecA + cos²A + sec²A +2 cosA×secA
sin²A + cos²A + cose²cA +sec²A + 2sinA×1/sinA + 2cosA×1/cosA
•°• cosec²A = 1 + sec²A
and , sec²A = 1 + tan²A
hence ,
= 1 + 1 + cot²A + 1 + tan²A + 2 + 2
= 7 + tan²A + cot²A RHs prooved ...
(sinA + cosecA)² + (cosA + secA ) ²
sin²A + cosec²A + 2sinA×cosecA + cos²A + sec²A +2 cosA×secA
sin²A + cos²A + cose²cA +sec²A + 2sinA×1/sinA + 2cosA×1/cosA
•°• cosec²A = 1 + sec²A
and , sec²A = 1 + tan²A
hence ,
= 1 + 1 + cot²A + 1 + tan²A + 2 + 2
= 7 + tan²A + cot²A RHs prooved ...
miffy1:
thank u
Similar questions