Prove that
(sinA + cosecA)^2 + (cosA + secA)^2 = (1 + secA.cosecA)^2
Plz Answer this ASAP
Answers
Answered by
5
Hey Buddy
Here's the answer
_________________________
# Some formulas
1. cos^2 A + sin^2 A = 1
2. sin A. cosec A = 1
3. cos A. sec A = 1
4. ( a + b )^2 = a^2 + b^2 + 2 a.b
Now
# L.H.S.
=> (sinA + cosecA)^2 + (cosA + secA)^2
=> Applying ( 4 )
=> ( Sin^2 A + cosec^2 A + 2 sin A.cosec A ) + ( cos^2 A + sec^2 A + 2cos A. sec A )
=> sin^2 A + cosec^2 A + 2(1) + cos^2 A + sec^2 A + 2(1)
=> sin^2 A + cos^2 A + cosec^2 A + sec^2 A + 4
=> 1 + cosec^2 A + sec^2 A + 4
=> 5 + cosec^2 A + sec^2 A
=> 5 + ( 1/sin^2 A ) + ( 1 / cos^2 A )
=> taking L.C.M.
=> 5 + ( cos^2 A + sin^2 A )/(sin A. cos A )^2
=> 5 + 1/(sin A. cos A )^2
=> 5 + ( cosec A. sec A )^2
HOPE HELPED...
JAI HIND
:)
Anonymous:
there is some mistake in question
Similar questions