Math, asked by darkgenius2006, 1 year ago

Prove that
(sinA + cosecA)^2 + (cosA + secA)^2 = (1 + secA.cosecA)^2

Plz Answer this ASAP

Answers

Answered by Anonymous
5

Hey Buddy

Here's the answer

_________________________

# Some formulas

1. cos^2 A + sin^2 A = 1

2. sin A. cosec A = 1

3. cos A. sec A = 1

4. ( a + b )^2 = a^2 + b^2 + 2 a.b

Now

# L.H.S.

=> (sinA + cosecA)^2 + (cosA + secA)^2

=> Applying ( 4 )

=> ( Sin^2 A + cosec^2 A + 2 sin A.cosec A ) + ( cos^2 A + sec^2 A + 2cos A. sec A )

=> sin^2 A + cosec^2 A + 2(1) + cos^2 A + sec^2 A + 2(1)

=> sin^2 A + cos^2 A + cosec^2 A + sec^2 A + 4

=> 1 + cosec^2 A + sec^2 A + 4

=> 5 + cosec^2 A + sec^2 A

=> 5 + ( 1/sin^2 A ) + ( 1 / cos^2 A )

=> taking L.C.M.

=> 5 + ( cos^2 A + sin^2 A )/(sin A. cos A )^2

=> 5 + 1/(sin A. cos A )^2

=> 5 + ( cosec A. sec A )^2

HOPE HELPED...

JAI HIND

:)


Anonymous: there is some mistake in question
darkgenius2006: ya.. but came in my maths test today...
darkgenius2006: it came*
Anonymous: it should be (SinA+secA)^2+(cosA+cosecA)^2
darkgenius2006: yaaa
darkgenius2006: thx
darkgenius2006: would you like to be the brainliest?
Anonymous: ✌ Fantastic
Arbitromer: you are the next-generation puthagoras
darkgenius2006: lol
Similar questions