Math, asked by sathishsrusti, 1 year ago

Prove that=(SinA+cosecA )^2+(cosA+secA)^2=7+tan^2A+cot^2 A

Answers

Answered by Anonymous
4

\bf\huge LHS = (sinA + cosecA)^2 + (cosA + secA)^2


\bf\huge (sin^2 A + cosec^2 A + 2sinA cosecA ) + (cos^2 A + sec^2 A + 2 cosA SecA)


\bf\huge (sin^2 A + cosec^2 A + 2 sinA . \frac{1}{sinA}) + (cos^2A + sec^2 A + 2 cosA . \frac{1}{cosA})


\bf\huge (sin^2 A + cosec^2 A + 2) + (cos^2 A + sec^2 A + 2)


\bf\huge (sin^2 A + cos^2 A + 2) + (cos^2 A + sec^2 A + 2)


\bf\huge sin^2 A + cos^2 A + cosec^2 A + sec^2 A + 4


\bf\huge 1 + (1 + cot^2) + (1 + tan^2 A) + 4


\bf\huge 7 + tan^2 A + cot^2 A


Similar questions