Math, asked by swarnaswarna9650, 4 months ago

prove that (sinA+cosecA) 2 +(cosA+Seca) 2=7+tan2 A​

Answers

Answered by riveratwins2111
1

Answer:

Step-by-step explanation:

=(sinA+cosecA)²+(cosA+secA)²

=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA

=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA

=1+cosec²A+sec²A+2+2

=5+(1+cot²A)+(1+tan²A)

=7+tan²A+cot²A

Identities used:

1+tan²A=sec²A

1+cot²A=cosec²A

sin²A+cos²A=1

cosecA=1/sinA

secA=1/cosA

Similar questions