Prove that (sinA+cosecA) ² + (cosA+secA) ² = 7 + tan²A+cos²A
Answers
Answered by
11
hope it will help u
mark brainlist
mark brainlist
Attachments:
Answered by
5
HEY MATE+
HERE IS YOUR ANSWER:
STEP BY STEP EXPLANATION:
TO PROVE :
(sinA +cosecA)^2+(cosA+secA)^2=7+tan^2A+cos^2A
LHS: Sin^2A+cosec^2A+2sinAcosecA+cos^2A+sec^2A+2cosAsecA {(a+b)^2=a^2+b^2+2ab}
=sin^2A+cos^2A+(2sinA×1/sinA)+cosec^2+sec^2+(2cosA×1/cosA)
=1+(2)+cosec^2A+sec^2A+(2)
=5+cosec^2A+sec^2A
=5+cot^2A+1+ tan^A+1
=7+cot^2A+tan^2A=RHS
HENCE PROVED
HOPE IT HELPED ^_^
DevMazumdar:
Thanks yrrr
Similar questions