Math, asked by sanjaysingh48996, 7 months ago

prove that –

(sinA+cosecA)2 + (cosA+secA)2 = 7+tan2A+cot2A​

Answers

Answered by Anonymous
109

♣ Qᴜᴇꜱᴛɪᴏɴ :

\boxed{\sf{Prove\:\left(sinA+cosecA\right)^2\:+\:\left(cosA+secA\right)^2\:=\:7+tan^2A+cot^2A}}

♣ ᴀɴꜱᴡᴇʀ :

\mathrm{Manipulating\:left\:side}

\left(\sin \left(a\right)+\csc \left(a\right)\right)^2+\left(\cos \left(a\right)+\sec \left(a\right)\right)^2

\left(\cos \left(a\right)+\sec \left(a\right)\right)^2+\left(\csc \left(a\right)+\sin \left(a\right)\right)^2=

\cos ^{2}(a)+2 \cos (a) \sec (a)+\sec ^{2}(a)+\csc ^{2}(a)+2 \csc (a) \sin (a)+\sin ^{2}(a)

=\cos ^2\left(a\right)+\csc ^2\left(a\right)+\sec ^2\left(a\right)+\sin ^2\left(a\right)+2\cos \left(a\right)\sec \left(a\right)+2\csc \left(a\right)\sin \left(a\right)

\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1

=1+\csc ^2\left(a\right)+\sec ^2\left(a\right)+2\cos \left(a\right)\sec \left(a\right)+2\csc \left(a\right)\sin \left(a\right)

\csc ^{2}(a)+\sec ^{2}(a)+2 \cos (a) \sec (a)+2 \csc (a) \sin (a)=\cot ^{2}(a)+\tan ^{2}(a)+6

=1+\cot ^2\left(a\right)+\tan ^2\left(a\right)+6

\large\boxed{\sf{=7+\tan ^2\left(a\right)+\cot ^2\left(a\right)}}

\mathrm{We\:showed\:that\:the\:two\:sides\:could\:take\:the\:same\:form}

\Rightarrow \mathrm{True}

Answered by vaibhav62835
1

Step-by-step explanation:

I hope this will help you

Attachments:
Similar questions