prove that (sinA+cosecA)^2+(cosA+secA)^2 equal to 7+tan^2A+cot^2A
Answers
Answered by
914
=(sinA+cosecA)²+(cosA+secA)²
=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA
=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA
=1+cosec²A+sec²A+2+2
=5+(1+cot²A)+(1+tan²A)
=7+tan²A+cot²A
Identities used:
1+tan²A=sec²A
1+cot²A=cosec²A
sin²A+cos²A=1
cosecA=1/sinA
secA=1/cosA
=sin²A+cosec²A+2sinAcosecA+cos²A+sec²A+2cosAsecA
=sin²A+cos²A+cosec²A+sec²A+2sinA×1/sinA+2cosA×1/cosA
=1+cosec²A+sec²A+2+2
=5+(1+cot²A)+(1+tan²A)
=7+tan²A+cot²A
Identities used:
1+tan²A=sec²A
1+cot²A=cosec²A
sin²A+cos²A=1
cosecA=1/sinA
secA=1/cosA
Answered by
253
Hi !
Here's the answer to your query
LHS = (sin A + cosec A)2 + (cos A+ sec A)2
= (sin2 A + 2 sin A . cosec A + cosec2 A) + (cos2 A + 2 cos A . sec A + sec2 A)
= sin2 A + 2 + cosec2 A + cos2 A + 2 + sec2 A ---(sin A . cosec A =1=cos A . sec A)
= sin2 A + 2 + 1 + cot2 A + cos2 A + 2 + 1 + tan2 A ---(cosec2 A=1+ cot2 A & sec2 A=1+tan2 A)
= ( sin2 A + cos2 A ) + 6 + ( cot2 A + tan2 A )
= 1 + 6 + cot2 A + tan2 A-----(sin2 A + cos2 A =1)
= 7 + tan2 A + cot2
= RHS
Hence proved
Cheers!!!
Similar questions