Prove that (sinA-cosecA)(cosA-secA) = 1/(tanA+cotA)
Answers
Answered by
9
heya friend11✔
Here is ur answer...
===============
From lhs ..
(sinA-cosecA)(cosA-secA)
=>(sinA-1/sinA)(cosA-1/cosA)
=>(sin^2A-1/sinA)*(cos^2A-1)/cosA
=>(cos^2A/sin^2A*)*(sin^2A/cosA) ...【•*•sin^2A-1=cos^2A ...and cos&2A-1=sin^2A】
=>cos^2A*sin^2A/cosA*sinA
=>cosA*sinA.......lhs...
again....from..Rhs ....
1/(tanA+cotA)
=>1/sinA/cosA+cosA/sinA
=>1/sin^2A+cos^2A/sinA*cosA.
=>1/1/sinA*cosA...【cos^2A+sin^2A=1】
so.....sinA*cosA....Rhs=lhs ....prooved...here...
========
hope it help you...☺
@Rajukumar☺☺☺
Here is ur answer...
===============
From lhs ..
(sinA-cosecA)(cosA-secA)
=>(sinA-1/sinA)(cosA-1/cosA)
=>(sin^2A-1/sinA)*(cos^2A-1)/cosA
=>(cos^2A/sin^2A*)*(sin^2A/cosA) ...【•*•sin^2A-1=cos^2A ...and cos&2A-1=sin^2A】
=>cos^2A*sin^2A/cosA*sinA
=>cosA*sinA.......lhs...
again....from..Rhs ....
1/(tanA+cotA)
=>1/sinA/cosA+cosA/sinA
=>1/sin^2A+cos^2A/sinA*cosA.
=>1/1/sinA*cosA...【cos^2A+sin^2A=1】
so.....sinA*cosA....Rhs=lhs ....prooved...here...
========
hope it help you...☺
@Rajukumar☺☺☺
kumargv100:
Tq so much
Similar questions