Math, asked by hanachan06, 19 days ago

Prove that SinA (sec A + cosec A) -cos A (sec A- cosec A) = sec A cosec A.​

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: sinA(secA + cosecA) - cosA(secA - cosecA)

We know,

\boxed{\tt{  \: secx =  \frac{1}{cosx} \: }} \\

and

\boxed{\tt{  \: cosecx =  \frac{1}{sinx} \: }} \\

So, using this identity, we can rewrite as

\rm \:  =  \: sinA\bigg(\dfrac{1}{cosA}  + \dfrac{1}{sinA}  \bigg) - cosA\bigg(\dfrac{1}{cosA} - \dfrac{1}{sinA}  \bigg)

\rm \:  =  \: sinA\bigg(\dfrac{sinA + cosA}{cosA \: sinA}\bigg) - cosA\bigg(\dfrac{sinA - cosA}{cosA \: sinA}\bigg)

\rm \:  =  \: \dfrac{ {sin}^{2}A + sinA \: cosA}{sinA \: cosA}  - \dfrac{sinA \: cosA -  {cos}^{2}A}{sinA \: cosA}

\rm \:  =  \: \dfrac{ {sin}^{2}A + \cancel{ sinA \: cosA} -  \cancel{sinA \: cosA} +  {cos}^{2}A }{sinA \: cosA}

\rm \:  =  \: \dfrac{ {sin}^{2} A +  {cos}^{2}A}{sinA \: cosA}

\rm \:  =  \: \dfrac{ 1}{sinA \: cosA}

\rm \:  =  \: secA \: cosecA

Hence Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by as3801504
1

\sin(a) ( \sec \: a  +  \cosec \: a) -  \cos \: a( \sec \: a - cosec \: a) \\ we \: know \: that \:  \\ sec \: a =  \frac{1}{cos \: a}  \\ and \\ cosec \: a =  \frac{1}{sina}  \\ sin \: a( \frac{1}{cos \: a} +   \frac{1}{sin \: a} ) - cos \: a( \frac{1}{cos \:  \: a}   - \frac{1}{sin\: a} ) \\ sin  \: a( \frac{sin \: a + cos \: a}{sina \: cosa} ) - cos \: a( \frac{sin a\:  -  \: cos \: a}{sina \: cosa} ) \\  \frac{sin {}^{2}a  + sinacosa}{sinacosa}  -  \frac{sinacosa  + cos {}^{2} \: a }{sinacosa}  \\  \frac{sin {}^{2}a + sinacosa - sinacosa + cos {}^{2} a }{sinacosa}  \\  \frac{sin {}^{2} a + cos {}^{2} a}{sinacosa}  \\ by \: using \: identy \\ sin {}^{2}  +  \cos {}^{2} a = 1 \\  \frac{1}{sinacosa}  \\ cosec \: a \: sec \: a

Similar questions