Math, asked by mansi444890, 1 year ago

Prove that : ( sinA+secA)^2 +(cosA+cosecA)^ 2 = (1+secA.cosecA)^2

Answers

Answered by shubhamtiwari31
3
(SinA +1/CosA)2 +(CosA+ 1/SinA)2      =((SinACosA +1)/CosA)2 +((SinACosA +1)/SinA)2         =(SinACosA +1)2/Cos2A +(SinACosA+1)2/Sin2A     =(SinACosA +1)2 {1/Cos2A +1/Sin2A}     =(SinACosA +1)2 {Sin2A +Cos2A /Sin2 A Cos2 A}     =(SinACosA +1)2 {1/Sin2 A Cos2 A)      =( SinA Cos A/SinA Cos A +1/SinA Cos A)2      =(1+CosecA.SecA)2      =RHS

mansi444890: Thnx...
Answered by sandy1816
0

( {sinA + secA})^{2}  + (cosA + cosecA) ^{2}  \\  \\  = ( {sinA +  \frac{1}{cosA} })^{2}  + ( {cosA +  \frac{1}{sinA} })^{2}  \\   \\ =  {sin}^{2} A +  \frac{1}{ {cos}^{2} A}  + 2 \frac{sinA}{cosA}  +  {cos}^{2} A +  \frac{1}{ {sin}^{2} A}  + 2 \frac{cosA}{sinA}  \\  \\  = 1 + ( \frac{1}{ {sin}^{2}A }  +  \frac{1}{ {cos}^{2} A} ) + 2( \frac{sinA}{cosA}  +  \frac{cosA}{sinA} ) \\  \\  = 1 +  \frac{1}{ {sin}^{2} A {cos}^{2}A }  + 2 (\frac{1}{sinAcosA} ) \\  \\  = 1 +  {sec}^{2} A {cosec}^{2} A + 2secAcosecA \\  \\  = ( {1 + secAcosecA})^{2}

Similar questions