Math, asked by Prachi7780, 8 months ago

Prove that (sinA+secA) 2 +(cosA+cosecA ) 2 =(1+secAtanA ) 2

Answers

Answered by vijayapravallikapatt
0

(sinA+secA)^2+(cosA+cosecA )^2

=(1+secAcosecA )^2

LHS

=> sin^2A + sec^2A + 2sinAsecA +

cos^2A + cosec^2A + 2cosAcosecA

=> (sin^2A + cos^2A) + 2(sinA/cosA)

+ 2(cosA/sinA) + (sec^2A + cosec^2A)

=> 1 + 2tanA + 2cotA + (sec^2A

+cosec^2A)

=> 1 + 2(tanA + cotA) + (sec^2A

+ cosec^2A)

=> 1 + 2/sinA × cosA + 1/sin^2A × cos^2A

=> (1)^2+ 2secAcosecA + (secAcosecA)^2

=> (1 + secAcosecA)^2

Hope that it is helpful to you

If it is helpful to you add my answer to

Brainliest

and

Follow me

Answered by sandy1816
1

( {sinA + secA})^{2}  + (cosA + cosecA) ^{2}  \\  \\  = ( {sinA +  \frac{1}{cosA} })^{2}  + ( {cosA +  \frac{1}{sinA} })^{2}  \\   \\ =  {sin}^{2} A +  \frac{1}{ {cos}^{2} A}  + 2 \frac{sinA}{cosA}  +  {cos}^{2} A +  \frac{1}{ {sin}^{2} A}  + 2 \frac{cosA}{sinA}  \\  \\  = 1 + ( \frac{1}{ {sin}^{2}A }  +  \frac{1}{ {cos}^{2} A} ) + 2( \frac{sinA}{cosA}  +  \frac{cosA}{sinA} ) \\  \\  = 1 +  \frac{1}{ {sin}^{2} A {cos}^{2}A }  + 2 (\frac{1}{sinAcosA} ) \\  \\  = 1 +  {sec}^{2} A {cosec}^{2} A + 2secAcosecA \\  \\  = ( {1 + secAcosecA})^{2}

Similar questions