Prove that (sinA+secA) 2 +(cosA+cosecA ) 2 =(1+secAtanA ) 2
Answers
Answered by
0
(sinA+secA)^2+(cosA+cosecA )^2
=(1+secAcosecA )^2
LHS
=> sin^2A + sec^2A + 2sinAsecA +
cos^2A + cosec^2A + 2cosAcosecA
=> (sin^2A + cos^2A) + 2(sinA/cosA)
+ 2(cosA/sinA) + (sec^2A + cosec^2A)
=> 1 + 2tanA + 2cotA + (sec^2A
+cosec^2A)
=> 1 + 2(tanA + cotA) + (sec^2A
+ cosec^2A)
=> 1 + 2/sinA × cosA + 1/sin^2A × cos^2A
=> (1)^2+ 2secAcosecA + (secAcosecA)^2
=> (1 + secAcosecA)^2
Hope that it is helpful to you
If it is helpful to you add my answer to
Brainliest
and
Follow me
Answered by
1
Similar questions